\(3^{x+1}+3^x\cdot5=216\)
\(\Leftrightarrow3^x=27\)
hay x=3
Đúng 2
Bình luận (0)
\(3^{x+1}+3^x\cdot5=216\)
\(\Leftrightarrow3^x=27\)
hay x=3
a) (x – 5)(2x -32) = 0
b) 2(3x – 15)(5 – x) = 0
giúp em với
3x+3x+2+3x+3=35.37
1/2x-1/3x=-1/3
3x.3x+1.18=486
3x+4+3x+2=270
(3x - 26)2018=1
Tìm x biết
\(219-7.\left(x+1\right)=100\)
\(\left(3x-6\right).3^{100}=3^{103}\)
\(x-5^6:5^3=2^3:2^2=0\)
\(2018^{x-3}=2018\)
tìm x biết
3x =81
b) 11x − 3x = 60 + 2x