Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
Giải phương trình: a) \(18x^2-18x\sqrt{x}-17x-8\sqrt{x}-2=0\)
b) \(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
c) \(\sqrt{x-\sqrt{x-\sqrt{x-5}}}=5\)
cho \(\sqrt[3]{2+\sqrt{3}}-\sqrt[3]{\sqrt{28}-1}+2\)
tính M= x^3-6x^2+21x+2019
Bài 1 : giải phuơng trình:
a) \(2\sqrt{3}-\sqrt{4+x^2}=0\)
b) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)
c) \(\sqrt{4\left(x+2\right)^2}=8\)
d) \(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
e) \(\sqrt[3]{4x+1}=\sqrt[3]{-7}\)
giải pt vô tỉ:
\(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
Giải PT:
a) -5x+7\(\sqrt{x}\) +12=0
b) \(\dfrac{1}{3}\)\(\sqrt{4x^2-20}\) +2\(\sqrt{\dfrac{x^2-5}{9}}\) -3\(\sqrt{x^2-5}=0\)
c) \(\sqrt{9x+27}+5\sqrt{x+3}-\dfrac{3}{4}\sqrt{16x+48}=5\)
d) \(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=3\sqrt{x-2}+8\)
A=\(\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{8}\right)2\sqrt{6}-5\sqrt{3}\)
B = \(\left(2\sqrt{3}-3\sqrt{2}\right)^2+2\sqrt{6}+3\sqrt{24}\)
Bài 1 GIẢI PHƯƠNG TRÌNH:
a) \(\sqrt{x-5}=\sqrt{3-x}\)
b) \(\sqrt{4-5x}=\sqrt{2-5x}\)
c) x2+4x+5=2\(\sqrt{2x+3}\)
d) \(\sqrt{x^2-2x+1}=\sqrt{4x^2-4x+1}\)
Cho các biểu thức:
A= \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{24}+\sqrt{25}}\)
B= \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}\)
a. Trục căn ở mẫu biểu thức \(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\)
b. Tính giá trị của A
c. Chứng minh rằng B>8