\(\Leftrightarrow2cos^2x-1=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
\(\Leftrightarrow2cos^2x-1=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
Giải các phương trình lượng giác sau:
1) \(2cos^2\left(x+\dfrac{2\pi}{3}\right)-1=0\)
2) \(4cos^2\left(x+\dfrac{\pi}{6}\right)-3=0\)
3) \(8cos^3\left(2x-\dfrac{\pi}{6}\right)-3\sqrt{3}=0\)
Với giá trị nào của m thì pt \(sin\left(x+\frac{\pi}{2}\right)+2cos\left(x+\pi\right)+m=0\) có đúng 3 nghiệm phân biệt thuộc đoạn \(\left[0;\frac{7\pi}{2}\right]\)
\(\dfrac{3cos2x-2cos\left(\dfrac{201\pi}{2}-x\right)+5}{2-2sin^2x}=0\)
Giải giúp mình với ạ <333333
Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)
Có bao nhiêu m nguyên để pt có nghiệm
a) \(sin^6x+cos^6x+3sinx.cosx-\dfrac{m}{4}+2=0\)
b) \(\left(sinx-1\right)\left[2cos^2x-\left(2m+1\right)cosx+m\right]=0\) có 4 nghiệm phân biệt \(\in\left[0;2\pi\right]\)
Mọi người giúp em với, em cảm ơn ạ
Bài tập quy về dạng phương trình cơ bản:
\(1.\sin\left(x-\frac{\pi}{3}\right)+2cos\left(x-\frac{\pi}{6}\right)=0\);
\(2.\sin^23x=cos^2x\);
\(3.sin\left(2x-\frac{7\pi}{2}\right)+cos2x=1\)
\(4.\sqrt{2}cos\left(x-\frac{3\pi}{4}\right)=1+sinx\)
\(5.\sin\left(2x-\frac{7\pi}{2}\right)+cós2x=1\)
giải các pt
a) \(cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
b) \(2cos\left(3x-\frac{\pi}{3}\right)=1\)
c) \(6cos\left(4x+\frac{\pi}{5}\right)+3\sqrt{3}=0\)
d) \(\frac{4cosx+3}{2cosx+1}=\frac{5}{2}\)
Giải phương trình: \(2cos\left(x+\frac{\pi}{6}\right)+3cos\left(x-\frac{\pi}{3}\right)=\frac{5\sqrt{2}}{2}\)
Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\)
Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).
Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).
Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?
Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.
Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là?
Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?
Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?
Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?
Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?