a: Xét ΔDEF vuông tại D có DH là đường cao
nên DH^2=EH*FH
=>DH=4,8cm
Xét ΔDEF vuông tại D có DH là đường cao
nên ED^2=EH*EF và FD^2=FH*FE
=>ED^2=36 và FD=64
=>ED=6cm; FD=8cm
b: DK=DF/2=4cm
Xét ΔDKE vuông tại D có tan DEK=DK/DE=4/6=2/3
nên \(\widehat{DEK}\simeq34^0\)
c: ΔDEF vuông tại D có DH là đường cao
nên EH*EF=ED^2
ΔDKE vuông tại D có DM là đường cao
nên EM*EK=ED^2
=>EH*EF=EM*EK
=>EH/EK=EM/EF
Xét ΔEHM và ΔEKF có
EH/EK=EM/EF
góc HEM chung
Do đó: ΔEHM đồng dạng với ΔEKF
=>góc EHM=góc EKF
=>góc FHM+góc FKM=180 độ
=>FKMH nội tiếp
=>góc MKH=góc MFH