`a)1/[1+\sqrt{2}]=[1-\sqrt{2}]/[1-2]=[1-\sqrt{2}]/[-1]=\sqrt{2}-1`
`b)\sqrt{3}/[\sqrt{3}-5]=[\sqrt{3}(\sqrt{3}+5)]/[3-25]=[-3-5\sqrt{3}]/22`
`c)[4\sqrt{5}]/[\sqrt{5}-\sqrt{3}]=[4\sqrt{5}(\sqrt{5}+\sqrt{3})]/[5-3]=2\sqrt{5}(\sqrt{5}+\sqrt{3})=10+2\sqrt{15}`
`d)[3\sqrt{3}-2\sqrt{2}]/[3\sqrt{3}+2\sqrt{2}]`
`=[(3\sqrt{3}-2\sqrt{2})^2]/[27-8]`
`=[27+8-12\sqrt{6}]/19`
`=[35-12\sqrt{6}]/19`
`e)[8\sqrt{3}-3\sqrt{5}]/[9\sqrt{3}-4\sqrt{5}]`
`=[(8\sqrt{3}-3\sqrt{5})(9\sqrt{3}+4\sqrt{5})]/[243-80]`
`=[216+32\sqrt{15}-27\sqrt{15}-60]/163`
`=[156+5\sqrt{15}]/163`