Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Dương

1.tính giá trị của P=\(\left(x^{21}+y^{21}\right)\left(y^{11}+z^{11}\right)\left(z^{2017}+x^{2017}\right)\) biết \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)

2. CMR: nếu a, b,c là ba số tm a+b+c=2013 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2013}\) thì một trong ba số phải có một số bằng 2013

Nguyễn Việt Lâm
21 tháng 10 2019 lúc 22:46

Câu 1 hỏi rồi vẫn hỏi lại?

2/ \(a;b;c\ne0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2013}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{ab+bc+ca+c^2}{ab\left(ac+bc+c^2\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{\left(b+c\right)\left(c+a\right)}{ab\left(bc+ca+c^2\right)}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Do vai trò a;b;c như nhau nên ta chỉ cần xét 1 trường hợp

Giả sử \(a=-b\Rightarrow a+b+c=2013\Leftrightarrow a-a+c=2013\Rightarrow c=2013\)

Vậy luôn có 1 trong 3 số bằng 2013

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hoàng Quốc Tuấn
Xem chi tiết
Sakura
Xem chi tiết
HHHHHHHHH
Xem chi tiết
le duc minh vuong
Xem chi tiết
Lê Đình Quân
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết