Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Đình Quân

Cho 3 số x,y,z khác 0 đồng thời thỏa mãn \(x+y+z=\frac{1}{2}\);\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)

Tính giá trị của Q=\(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)

Trần Thanh Phương
12 tháng 2 2020 lúc 9:15

Có: \(x+y+z=\frac{1}{2}\Leftrightarrow2x+2y+2z=1\)

Mặt khác: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2x+2y+2z}{xyz}=4\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) ( vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\) )

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{\frac{1}{2}}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{x+y+z}-\frac{1}{z}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y\right)\left(zx+yz+z^2\right)+xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^{2021}+y^{2021}=0\\y^{2017}+z^{2017}=0\\z^{2019}+x^{2019}=0\end{matrix}\right.\)\(\Leftrightarrow Q=0\)

Vậy...

Khách vãng lai đã xóa

Các câu hỏi tương tự
dam thu a
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
bach nhac lam
Xem chi tiết
Agami Raito
Xem chi tiết
Lee Thuu Hà
Xem chi tiết
bach nhac lam
Xem chi tiết
Angela jolie
Xem chi tiết
Không Bít
Xem chi tiết
Ánh Dương
Xem chi tiết