2.
a.\(\sqrt{x-2+\sqrt{2x-5}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}}\)
b.\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
tìm x,y,z biết
a) x+y+z+12=4\(\sqrt{x}+6\sqrt{y-1}\)
b)x+y+z+8=2\(\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
c)\(\sqrt{x-2001}+\sqrt{x-2002}-\sqrt{x-2003}=\dfrac{1}{2}\left(x+y+z\right)-3015\)
giải các phương trình
a \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)
b \(\sqrt{3x^2-4x}=2x-3\)
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}=2\)
bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.
a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)
bài 2: tính giá trị các biểu thức sau:
a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)
c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)
bài 3: thực hiện phép tính.
a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)
c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
bài 4: thực hiện các phép tính sau.
a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)
c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)
bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)
b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)
bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt[2]{3}-\sqrt[4]{3x}+27-\sqrt{27x}\left(x\ge0\right)\)
b,\(\sqrt[3]{2x}-\sqrt[5]{8x}+\sqrt[7]{18x}+28\)
c, \(\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3\left(x+y\right)^2}{2}}\)
d, \(\dfrac{2}{2a-1}.\sqrt{5a^2\left(1-4a+4a^2\right)}\)
bài 2 : biến đổi đơn giản
a, \(\sqrt{7.6a^2.a^2}\)
b, \(\sqrt{\dfrac{4}{5}}\)
c, \(\sqrt{\dfrac{3}{2a^3}}\)(a>0)
d,\(\dfrac{7}{2\sqrt{5}}\)
e, \(\dfrac{10}{\sqrt{3}+1}\)
f, \(\dfrac{6}{\sqrt{5}-\sqrt{3}}\)
tìm x, biết
\(\sqrt{2x+3}=3-\sqrt{5}\)
\(\sqrt{5+\sqrt{7x}}=2+\sqrt{7}\)
\(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
\(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
Tìm x,y,z sao cho x+y+z+8= z\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
1) Giải các PT sau:
a)\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
b)\(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\)
c)\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
d)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
e)\(2x+3=2\sqrt{x+1}+\sqrt{2x+1}\)
f)\(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\)
Giải phương trình:
a. \(\sqrt{4-5x}=12\)
b. \(10-2\sqrt{2x+1}=4\)
c. \(5-\sqrt{x-1}=7\)
d. \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\)
e. \(\sqrt{x+1}+10=2\sqrt{x+1}-2\)
f. \(\sqrt{16x+32}-5\sqrt{x+2}=-2\)