tìm x,y,z biết
a) x+y+z+12=4\(\sqrt{x}+6\sqrt{y-1}\)
b)x+y+z+8=2\(\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
c)\(\sqrt{x-2001}+\sqrt{x-2002}-\sqrt{x-2003}=\dfrac{1}{2}\left(x+y+z\right)-3015\)
Cho x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=7\); x+y+z=23 ; \(\sqrt{xyz}=3\). Tính giá trị biểu thức M =\(\frac{1}{\sqrt{xy}+\sqrt{z}-6}+\frac{1}{\sqrt{yz}+\sqrt{x}-6}+\frac{1}{\sqrt{zx}+\sqrt{y}-6}\)
1.Tính:
a.\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
b.\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
2.
a.\(\sqrt{x-2+\sqrt{2x-5}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}}\)
b.\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
1)với x,y,z là các số nguyên thoả mãn x+y+z+xy+yz+xz=6.tìm giá trị nhỏ nhất của biểu thức:\(\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\)
Tìm các số nguyên x, y thoả mãn \(\frac{5}{x+y\sqrt{z}}-\frac{4}{x-y\sqrt{z}}+18\sqrt{2}=3\)
Cho hai bt A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)và B=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\)
a) rút gọn B
b)tìm x thuộc Z để C= A(B-2) có giá trị nguyên
Cho biểu thức :
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
a) Rút gọn B ?
b) Tìm x để B > -1 ?
c) Tìm x thuộc Z để B thuộc Z ?
1) Cho x,y,z dương thỏa mãn xyz=8 CMR:
\(\dfrac{x^2}{x^2+2x+4}+\dfrac{y^2}{y^2+2y+4}+\dfrac{z^2}{z^2+2z+4}\ge1\)
2) Cho x,y,z >0 và xyz=1 CMR:
(x+\(\dfrac{1}{y}-1\)) \(\left(y+\dfrac{1}{z}-1\right)\left(z+\dfrac{1}{x}-1\right)\le1\)