Bài 1:
Ta có: \(x^2+2017x>0\)
\(\Rightarrow x\left(2017+x\right)>0\)
\(\Rightarrow x>0;2017+x>0\)
hoặc \(x< 0;2017+x< 0\)
+) \(x>0\); \(2017+x>0\Rightarrow x>-2017\)
\(\Rightarrow x>0\)
+) \(x< 0;2017+x< 0\Rightarrow x< -2017\)
\(\Rightarrow x< -2017\)
Vậy \(\left[{}\begin{matrix}x>0\\x< -2017\end{matrix}\right.\).
Bài 2:
\(B=\dfrac{x^2+15}{x^2+3}=\dfrac{x^2+3+12}{x^2+3}=\dfrac{x^2+3}{x^2+3}+\dfrac{12}{x^2+3}=1+\dfrac{12}{x^2+3}\)
Ta có: \(x^2\ge0\forall x\Rightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\dfrac{1}{x^2+3}\le\dfrac{1}{3}\forall x\Rightarrow\dfrac{12}{x^2+3}\le\dfrac{12}{3}=4\forall x\)
\(\Rightarrow B=1+\dfrac{12}{x^2+3}\le1+4=5\forall x\)
Đẳng thức xảy ra khi \(x^2=0\Leftrightarrow x=0\)
Vậy với \(x=0\) thì \(B_{Max}=5\)