\(VT=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)
Lại có: \(3\left(x+1\right)^2+2\ge2\Rightarrow\dfrac{8}{3\left(x+1\right)^2+2}\le\dfrac{8}{2}=4\)
\(\Rightarrow VP\le4\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(2x+3\right)\left(1-2x\right)\ge0\\3\left(x+1\right)^2+2=2\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)