a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1
g.\(3^{x-1}\)=\(\frac{1}{243}\)
\(3^{x-1}\)=\(\frac{1}{3^5}\)
\(3^{x-1}\)=\(3^{-5}\)
x-1=-5
x=-4
e. (2x - 3)2 = 25
<=> (2x - 3)2 = 52 = (-5)2
<=> \(\begin{cases}2x-3=5\\2x-3=-5\end{cases}\)<=> \(\begin{cases}2x=8\\2x=-2\end{cases}\)<=> \(\begin{cases}x=4\\x=-1\end{cases}\)
Vậy x \(\in\){-1; 4}.
g. 3x-1 = 1/243
<=> 3x-1 = 3-5
<=> x - 1 = -5
<=> x = -5 + 1
<=> x = -4
Vậy x = -4.
h. 2x + 2x+3 = 144
<=> 2x.(1 + 23) = 144
<=> 2x . 9 = 144
<=> 2x = 16
<=> 2x = 24
<=> x = 4
Vậy x = 4.
h. 81 ^ ?