A,√50+√17=7,356840737
Mà 7,356840737<11
Vậy √50+√17<11
B,tương tự
A,√50+√17=7,356840737
Mà 7,356840737<11
Vậy √50+√17<11
B,tương tự
So sánh : \(\sqrt{12}\) và \(\sqrt{17}\)
Cho \(A=\sqrt{625}-\dfrac{1}{\sqrt{5}};B=\sqrt{576}-\dfrac{1}{\sqrt{6}}+1\)
Hãy so sánh A và B
So sánh
a) \(6\) và \(\sqrt{35}\)
b) \(\sqrt{23}+\sqrt{15}\) và \(\sqrt{91}\)
c) \(4+\sqrt{33}\) và \(\sqrt{29}+\sqrt{14}\)
d) \(\sqrt{33}-\sqrt{19}\) và \(6-\sqrt{17}\)
e) \(\sqrt{26}-\sqrt{3}-\sqrt{2009}\) và \(-42\)
g) \(\sqrt{17}+\sqrt{5}+\sqrt{1}\) và \(\sqrt{45}\)
h) \(\sqrt{a}+\sqrt{b}\) và \(\sqrt{a+b}\) với a>= 0; b>= 0
Tìm x , biết :
a, 50\(^{x^2}\)=80
b,2\(\sqrt{x}\)=1
c,\(\sqrt{3x}\)</= 6
Cho \(A=\sqrt{x+2}+\dfrac{3}{11};B=\dfrac{5}{17}-3\sqrt{x-5}\)
a) Tìm giá trị nhỏ nhất của A
b) Tìm giá trị lớn nhất của B
So sánh \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}\) và \(19\)
So sánh
a)\(\sqrt{35}+\sqrt{99}v\text{à}16\)
b)\(\sqrt{24}v\text{à}\sqrt{5}+\sqrt{10}\)
1. không tính so sánh \(\sqrt[]{50+2}\) với \(\sqrt{50}+\sqrt{2}\)
2.cho A =\(\dfrac{5}{\sqrt{x}-3}\) tìm x thuộc Z để A có giá trị nguyên
3.Biểu diễn \(-\sqrt{3}\) trên trục số
Bài 1 : So sánh \(\dfrac{-\sqrt{10}}{2}và-2\sqrt{5}\)