\(1.a)\dfrac{2^3+3.26-4^3}{2^3.3^2}\)
\(=\dfrac{2^3.3.2.13-\left(2^2\right)^3}{2^3.3^2}\)
\(=\dfrac{2^4.3.13-2^6}{2^3.3^2}\)
\(=\dfrac{2^3\left(2.3.13-2^3\right)}{2^3.3^2}\)
\(=\dfrac{78-8}{9}\)
\(=\dfrac{70}{9}\)
\(b)\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^9.2^4.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{13}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}\left(1+2.5\right)}{2^{11}.3^{11}\left(2.3\right)}\)
\(=\dfrac{2.11}{3.6}\)
\(=\dfrac{11}{9}\)
\(2.3^{x-1}-3^{x+1}=90\)
\(\Leftrightarrow3^x:3-3^x.3=90\)
\(\Leftrightarrow3^x\left(\dfrac{1}{3}-3\right)=90\)
\(\Leftrightarrow3^x.\dfrac{-8}{3}=90\)
\(\Leftrightarrow3^x=\dfrac{-135}{4}\)
\(\Leftrightarrow\) \(x\) không có giá trị nào để thỏa mãn đề bài.
Vậy \(x\in\varnothing\)
2:
\(3^{x-1}-3^{x+1}=90\)
\(\Rightarrow3^{x-2}-3^x=30\)
\(\Rightarrow3^x.3^{-2}-3^x=30\)
\(\Rightarrow3^x.\left(\dfrac{1}{9}-1\right)=30\)
\(\Rightarrow3^x.\dfrac{-8}{9}=30\)
\(\Rightarrow3^x=\dfrac{-135}{4}\)
\(\Rightarrow x=log_3\dfrac{-135}{4}\)