Bài 1:Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) ,\(g\left(x\right)=\sqrt{f\left(x\right)+6}-2\sqrt[3]{f\left(x\right)-2}\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt{x}-1\right)g\left(x\right)}\)
Bài 2: Cho \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2ax^2+30}-bx-5}{x^3-3x+2}=c\left(a;b;c\in R\right)\)
Tính giá trị \(P=a^2+b^2+36c\)
Bài 3: Cho a;b là các số nguyên dương. Biết \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+ax}+\sqrt[3]{8x^3+2bx^2+3}\right)=\dfrac{7}{3}\)
Tinh P= a+2b
Bài 4:Cho a,b,c thuộc R với a>0 thỏa mãn
\(c^2+a=2\) và \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{ax^2+bx}-cx\right)=-3\)
Tính P= a+b+5c
Bài 5:
Mấy câu này khó nên mong các bạn giúp mình với. Mai mình phải kiểm tra rồi
Hàm số nào sau đây liên tục trên toàn bộ tập số thực R
A/ f(X)=√x2+2x+1
B/ g(x)= 4x^2-5x^2+1
C/ h(x)= x-1/ x+1
D/ y= tanx
\(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}\)
+ Cho mình hỏi khi tử dương, đối với bài này và mẫu dần đến 0, nhưng mẫu lớn hơn 0 hay nhỏ hơn không.
Theo mình hiểu là giới hạn dần đến 2- thì mẫu âm, còn 2+ thì mẫu dương, nhưng nếu giới hạn chỉ dần đến 2 mà không biết là mẫu dương hay âm thì xác định giới hạn là dương hay âm vô cực như nào ạ
Bài 8: cho hàm số f(x) = (x ^ 2 + x - 6)/(x - 2); 2x + 1 khi x=2 khi x=2 Xét tính liên tục của hàm số tại x = 2
Tính giới hạn sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\left(x^2+3x+1\right)\sqrt{1+3x}-10}{x^2-1}\)
Tìm a để các hàm số sau liên tục tại x0
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{1-x}+\sqrt{1+x}}{x}khix< 0\\a+\dfrac{4-x}{x+2}khi\ge0\end{matrix}\right.\)tại x0 = 0
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[3]{x}-x}{x^2-x}\)
b, \(\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2-x+1}{x^3-3x+2}\)
tính
\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x-1}+x^2-3x+1}{\sqrt[3]{x-2}+x^2-x+1}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+1}+x\right)^n-\left(\sqrt{x^2+1}-x\right)^n}{x}\)