\(\left(x+y\right)\left(x+z\right)=x^2+xy+xz+yz=x\left(x+y+z\right)+yz\)
\(xyz=\frac{16}{x+y+z}\Rightarrow x+y+z=\frac{16}{xyz}\)
Vậy có:
\(x\left(x+y+z\right)+yz=x.\frac{16}{xyz}+yz\ge2\sqrt{x.\frac{16}{xyz}+yz}=2\sqrt{16}=2.4=8\)
Vậy ........
\(\left(x+y\right)\left(x+z\right)=x^2+xy+xz+yz=x\left(x+y+z\right)+yz\)
\(xyz=\frac{16}{x+y+z}\Rightarrow x+y+z=\frac{16}{xyz}\)
Vậy có:
\(x\left(x+y+z\right)+yz=x.\frac{16}{xyz}+yz\ge2\sqrt{x.\frac{16}{xyz}+yz}=2\sqrt{16}=2.4=8\)
Vậy ........
Cho x,y,z là số dương .Chứng minh rằng a)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge8\)
CHo x,y,z đôi một khác nhau thoả mãn:
x3+y3+z3 = 3xyz (xyz khác 0)
Tính \(B=\frac{16\left(x+y\right)}{z}+\frac{3\left(y+z\right)}{x}+\frac{2038\left(x+z\right)}{y}\)
Cho x, y, z đôi một khác nhau thỏa mãn: \(x^3+y^3+z^3=3xyz\) và \(xyz\ne0\). Tính: \(B=\dfrac{16.\left(x+y\right)}{z}+\dfrac{3.\left(y+z\right)}{x}-\dfrac{2019.\left(x+z\right)}{y}\)
Cho x, y, z khác 0 thỏa mãn: \(\left\{{}\begin{matrix}x+y+z=\frac{1}{2}\\\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\end{matrix}\right.\)
Tính: \(P=\left(y^{2009}+z^{2009}\right)\left(z^{2011}+x^{2011}\right)\left(x^{2013}+y^{2013}\right)\)
Giúp hộ mik ạ!!!
tính giá trị các biểu thức sau(x,y,z≠≠\ne0 và x≠≠\ney): M=|x|x|x|x\dfrac{\left|x\right|}{x} |y|y|y|y\dfrac{\left|y\right|}{y} |z|z|z|z\dfrac{\left|z\right|}{z} |xyz|xyz|xyz|xyz\dfrac{\left|xyz\right|}{xyz} N=xy|xy|xy|xy|\dfrac{xy}{\left|xy\right|} x−y|x−y|x−y|x−y|\dfrac{x-y}{\left|x-y\right|} (x|x|x|x|\dfrac{x}{\left|x\right|}-y|y|y|y|\dfrac{y}{\left|y\right|})
Đề:
Cho các số thực x, y, z thoả mãn x + y + z = 1 và \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=1\)
\(\left(x\ne-y;y\ne-z;z\ne-x\right)\)
Giá trị của biểu thức \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\) là . . .
Giải:
x + y + z = 1
=> x = 1 - (y + z)
y = 1 - (x + z)
z = 1 - (x + y)
Thay x = 1 - (y + z); y = 1 - (x + z) và z = 1 - (x + y) vào P, ta có:
\(P=\frac{x\left[1-\left(y+z\right)\right]}{y+z}+\frac{y\left[1-\left(x+z\right)\right]}{x+z}+\frac{z\left[1-\left(x+y\right)\right]}{x+y}\)
\(=\frac{x-x\left(y+z\right)}{y+z}+\frac{y-y\left(x+z\right)}{x+z}+\frac{z-z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-\frac{x\left(y+z\right)}{y+z}+\frac{y}{x+z}-\frac{y\left(x+z\right)}{x+z}+\frac{z}{x+y}-\frac{z\left(x+y\right)}{x+y}\)
\(=\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)-\left(x+y+z\right)\)
\(=1-1\)
\(=0\)
ĐS: 0
Trịnh Trân Trân <3
Cho x, y, z thỏa mãn: xyz=1
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Tính\(P=\left(x^{19}-1\right)\left(y^5-1\right)\left(z^{1890}-1\right)\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
103,CM:\(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{zx}+\frac{z\left(y-x\right)}{xy}}=x+y+z\)