Câu 1 mình ấn nhầm
giúp mình câu 2 thôi. Thank you
Câu 1 mình ấn nhầm
giúp mình câu 2 thôi. Thank you
1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
cho x,y>0. tìm GTNN của \(A=\dfrac{\left(x+y+1\right)^2}{xy+x+y}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)
1, Cho các số x,y,z không âm. \(\ne\)0. thỏa mãn: \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\le1\)
Tìm GTNN của \(P=x+y+z+\dfrac{1}{x+y+z}\)
2, Cho các số x,y dương thỏa mãn đk: xy+yz+zx =671
CMR: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Cho 2 số thực a, b thỏa mãn xy + \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=1\)
CMR: \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
1. Cho các số tự nhiên a,b thỏa mãn: \(2a^2+a=3b^2+b\)
CMR: a-b và 3a+3b+1 là các số chính phương
2. Tìm x biết:
\(\left(x^2+x=2\right)^2-\left(x+1\right)^3=x^6+1\)
3. Cho x,y,z > 0 thỏa mãn: xy+yz+zx=1 . Tìm GTNN của:
P=\(\dfrac{1}{4x^2+yz+2}+\dfrac{1}{4y^2+xz+2}+\dfrac{1}{4z^2+xy+2}\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho các số x>0, y>0. Tìm GTNN của biểu thức A=\(\frac{x^2+y^2}{xy}+\frac{\sqrt{xy}}{x+y}\)
cho x,y>0; x+y=1. Tìm GTNN của: \(\frac{1}{xy}+\frac{1}{x^2+y^2}\)
Bài 1: Cho biểu thức :
\(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\left(x\ge0;x\ne9\right)\)
a) Rút gọn A
b) Tìm tất cả các giá trị của x để A ≥ 0
Bài 2:
a) Trong hệ trục tọa độ Oxy cho hai đường thẳng (d1) : y = (m2 -1)x + 2m (m là tham số) và (d2): y = 3x + 4. Tìm các giá trị của m để 2 đường thẳng song song với nhau.
b) Cho phương trình: x2 - 2(m - 1)x + 2m - 5 = 0 (m là tham số). Tìm các giá trị của m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x12 - 2mx1 + 2m - 1)(x1 - 2) ≤ 0
Bài 3: Cho 3 số thực x,y,z thỏa mãn: x + y + z ≤ \(\frac{3}{2}\)
Tìm GTNN của biểu thức: \(P=\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)