Lời giải:
a) ĐK: \(x>0; y> 0\)
\(P=\frac{(\sqrt{x}-\sqrt{y})^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\frac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{xy}(\sqrt{x}-\sqrt{y})}{\sqrt{xy}}\)
\(=\frac{x+2\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})\)
\(=\frac{(\sqrt{x}+\sqrt{y})^2}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})=(\sqrt{x}+\sqrt{y})-(\sqrt{x}-\sqrt{y})=2\sqrt{y}\)
b)
Khi \(y=4-2\sqrt{3}=3+1-2\sqrt{3.1}=(\sqrt{3}-1)^2\)
\(\Rightarrow \sqrt{y}=\sqrt{3}-1\)
\(\Rightarrow P=2\sqrt{y}=2(\sqrt{3}-1)\)