Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC = 9 cm. Từ H vẽ tia
Hx vuông góc với đường thẳng BC. Lấy A thuộc tia Hx sao cho HA = 6 cm.
1, ∆ABC là ∆ gì ? Chứng minh điều đó.
2, Trên tia HC lấy điểm D sao cho HD = HA. Từ D vẽ đường thẳng song song với
AH cắt AC tại E.
Chứng minh: AE = AB
con chào các ac, các thầy cô giáo ạ .
con mới chứng minh được câu 1 . các thầy cô giáo chứng minh cho con câu 2 mới ạ. con cảm ơn ạ
Cho góc xBy là góc nhọn. Trên tia Bx, By lần lượt lấy điểm A, E sao cho BA=BE. Qua điểm A vẽ đường thẳng vuông góc với tia Bx cắt By tại C. Tia phân giác của góc B cắt AC ở D. Chứng minh:
a) Tam giác ABD = tam giác EBD
b) C/m: BD là đường trung trực của đoạn thẳng AE.
cho ∠xOy,trên tia Ox lấy điểm A trên tia Oy lấy điểm B sao cho OA=OB .Vẽ tia Oz là tia phân giác của ∠xOy ,trên tia Oz lấy C (OC>OA)
1.CM Δ AOC= ΔBOC 2.Gọi I là giao điểm của AB và OC.CM
a)I là trung điểm của đoạn thẳng AB
b)OC⊥AB
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng:
a) AM=DE/2
b)AM vuông góc DE
Cho tam giác ABC vuông tại A và có đường phân giác BD. Kẻ đường thẳng DH vuông
góc với BC tại điểm H. Trên tia đối của tia AB lấy điểm K sao cho AK = CH.
1. Chứng minh ba điểm H,D,K thẳng hàng và chứng minh BD vuông góc với KC.
2. (*) Chứng minh rằng 2(AD + AK) > CK.
Cho ΔABC cân tại A. Qua B kẻ tia Bx// AC; qua C kẻ tia Cy// AB. Bx cắt Cy tại D. Trên tia đối của tia BA lấy điểm E sao cho BE = BA. ED cắt AC tại F. Chứng minh
a. ΔABC = ΔBDE
b. C là trung điểm của AF
c. AD, BF, CE cùng đi qua 1 điểm G. G là gì của ΔAEF
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Cho \(\Delta ABC\) vuông tại A , đường cao AH , trung tuyến AM . Trên tia đối của tia MA lấy D sao DM = MA . Trên tia đối của tia CD lấy điểm I sao cho CI = CA . Qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E . Chứng minh rằng ;
a) AB vuông góc với EI b) AE = BC
c) \(AM=\dfrac{1}{2}BC\)
(Mọi người giúp e câu b với ạ , nêu hướng làm cũng đc )
cho tam giác ABC, qua A kẻ đường thẳng xy song song với BC, trên tia Ax lấy điểm D, trên tia Ay lấy điểm E. Chứng minh:
a) DAB = B; EAC = C
b) 3 điểm D,A,E thẳng hàng