Từ O vẽ các đoạn thẳng OA;OB;OC
Áp dụng định lý pytago vào :
+) \(\Delta\) AFO có :
AO2 = AF2 + OF2
=> AF2 = AO2 - OF2 (1)
+) \(\Delta\) BOG có :
BO2 = BG2 + OG2
=> BG2 = BO2 - OG2 (2)
+) \(\Delta\) COH có :
OC2 = OH2 + HC2
=> CH2 = OC2 - OH2 (3)
+) \(\Delta\)BFO có :
OB2 = OF2 + FB2
=> BF2 = OB2 - OF2 (4)
+) \(\Delta\) CGO có :
OC2 = OG2 + CG2
=> CG2 = OC2 - OG2 (5)
+) \(\Delta\) AOH có :
OA2 = OH2 + AH2
=> AH2 = OA2 - OH2 (6)
Từ (1), (2), (3) ta có :
AF2 + BG2 + CH2 = AO2 - OF2 + BO2 - OG2 + OC2 - OH2
= ( OB2 - OF2 ) + ( OC2 - OG2 ) + ( OA2 - OH2 ) (*)
Thay (4),(5),(6) vào (*) ta có :
AF2 + BG2 + CH2 = BF2 + CG2 + AH2
=>ĐPCM