\(\int\limits^2_1\frac{8x+5}{6x^2+7x+2}dx=\int\limits^2_1\frac{8x+5}{6\left(x+\frac{1}{2}\right)\left(x+\frac{2}{3}\right)}dx=\frac{1}{6}\int\limits^2_1(\frac{2}{x+\frac{2}{3}}+\frac{6}{x+\frac{1}{2}})dx\:\)
\(=\frac{1}{6}\left(2ln\left|x+\frac{1}{2}\right|+6ln\left|x+\frac{2}{3}\right|\right)\)\(|^2_1\)
=\(\frac{1}{3}ln\left(\left|x+\frac{1}{2}\right|\right)+ln\left(\left|x+\frac{2}{3}\right|\right)\)\(|^2_1\)
= \(\frac{1}{3}ln\frac{5}{2}+ln\frac{8}{3}-\frac{1}{3}ln\frac{3}{2}-ln\frac{5}{3}=\frac{1}{3}ln5-\frac{1}{3}ln3+ln8-ln3=3ln2-\frac{4}{3}ln3+\frac{1}{3}ln5\)
\(\Rightarrow\)a=3,b=\(\frac{-4}{3}\),c=\(\frac{1}{3}\)
P=2