Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tô Cường

Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng

a) 4

b) 5

c) \(\frac{3}{2}\)

d) \(\frac{25}{4}\)

Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\)\(g\left(x\right)=cos\left(ln\left(x\right)\right)\)

a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)

b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)

Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng

a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)

b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)

c) \(7\left[f\left(-1\right)\right]^2\)

d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)

Nguyễn Việt Lâm
9 tháng 2 2020 lúc 4:50

Câu 1:

\(\int\frac{sinx}{sinx+cosx}dx=\frac{1}{2}\int\frac{sinx+cosx+sinx-cosx}{sinx+cosx}dx=\frac{1}{2}\int dx-\frac{1}{2}\int\frac{cosx-sinx}{sinx+cosx}dx\)

\(=\frac{1}{2}x-\frac{1}{2}\int\frac{d\left(sinx+cosx\right)}{sinx+cosx}=\frac{1}{2}x-\frac{1}{2}ln\left|sinx+cosx\right|+C\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-\frac{1}{2}\end{matrix}\right.\)

\(\int cos^2xdx=\int\left(\frac{1}{2}+\frac{1}{2}cos2x\right)dx=\frac{1}{2}x+\frac{1}{4}sin2x+C\)

\(\Rightarrow\left\{{}\begin{matrix}c=\frac{1}{2}\\d=2\end{matrix}\right.\) \(\Rightarrow I=5\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 5:12

Câu 2:

\(I=\int\left(sin\left(lnx\right)-cos\left(lnx\right)\right)dx=\int sin\left(lnx\right)dx-\int cos\left(lnx\right)dx=I_1-I_2\)

Xét \(I_2=\int cos\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I_2=x.cos\left(lnx\right)+\int sin\left(lnx\right)dx=x.cos\left(lnx\right)+I_1\)

\(\Rightarrow I=I_1-\left(x.cos\left(lnx\right)+I_1\right)=-x.cos\left(lnx\right)+C\)

b/ \(I=\int\limits sin\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=sin\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{x}cos\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.sin\left(lnx\right)-\int cos\left(lnx\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]-I\)

\(\Rightarrow I=\frac{1}{2}x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]|^{e^{\pi}}_1=\frac{1}{2}\left(e^{\pi}+1\right)\)

\(\Rightarrow a=2;b=\pi;c=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
haudreywilliam
Xem chi tiết
Tô Cường
Xem chi tiết
Tô Cường
Xem chi tiết
haudreywilliam
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
Hoang Khoi
Xem chi tiết
Tô Cường
Xem chi tiết
Tô Cường
Xem chi tiết
Huỳnh Như
Xem chi tiết