\(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+1}\\ =\dfrac{\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\dfrac{\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\\ =\dfrac{\sqrt{5}+1}{4}-\dfrac{\sqrt{5}-1}{4}\\ =\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}\\ =\dfrac{2}{4}\\ =\dfrac{1}{2}\)
\(=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
=\(\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}\)
=\(\dfrac{2}{4}\)
=\(\dfrac{1}{2}\)