Let's solve each equation step by step:
√(x^2 - 6x + 9) = 3 - xSquaring both sides of the equation, we get:
x^2 - 6x + 9 = (3 - x)^2
x^2 - 6x + 9 = 9 - 6x + x^2
The x^2 terms cancel out, and we are left with:
-6x = -6x
This equation is true for any value of x. Therefore, there are infinitely many solutions.
x^2 - (1/2)x + 1/16 = x + 3/2Moving all terms to one side of the equation, we get:
x^2 - (1/2)x - x + 3/2 - 1/16 = 0
x^2 - (3/2)x + 29/16 = 0
To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 1, b = -3/2, and c = 29/16. Plugging in these values, we get:
x = (3/2 ± √((-3/2)^2 - 4(1)(29/16))) / (2(1))
x = (3/2 ± √(9/4 - 29/4)) / 2
x = (3/2 ± √(-20/4)) / 2
x = (3/2 ± √(-5)) / 2
Since the square root of a negative number is not a real number, this equation has no real solutions.
√(x - 2)√(x - 1) = √(x - 1) - 1Squaring both sides of the equation, we get:
(x - 2)(x - 1) = (x - 1) - 2√(x - 1) + 1
x^2 - 3x + 2 = x - 1 - 2√(x - 1) + 1
x^2 - 4x + 2 = -2√(x - 1)
Squaring both sides again, we get:
(x^2 - 4x + 2)^2 = (-2√(x - 1))^2
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4(x - 1)
x^4 - 8x^3 + 20x^2 - 16x + 4 = 4x - 4
Rearranging terms, we have:
x^4 - 8x^3 + 20x^2 - 20x + 8 = 0
This equation does not have a simple solution and requires further calculations or approximation methods to find the solutions.
√9 - 4√5 - √5 = -2Simplifying the left side of the equation, we get:
3 - 4√5 - √5 = -2
-√5 - 5 = -2
-√5 = 3
This equation is not true since the square root of a number cannot be negative.
Therefore, the given equations either have infinitely many solutions or no real solutions.