Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Nguyen

Tính

a)\(\frac{\sqrt{5}-2}{5+2\sqrt{5}}-\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}}\)

b)\(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

c)\(\frac{2\sqrt{3}-4}{\sqrt{3}-1}+\frac{2\sqrt{2}-1}{\sqrt{2}-1}-\frac{1+\sqrt{6}}{\sqrt{2}+3}\)

Nguyễn Lê Phước Thịnh
27 tháng 8 2020 lúc 13:54

a) Ta có: \(\frac{\sqrt{5}-2}{5+2\sqrt{5}}-\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}}\)

\(=\frac{\sqrt{5}-2}{\sqrt{5}\left(\sqrt{5}+2\right)}-\frac{\sqrt{5}}{\sqrt{5}\left(\sqrt{5}+2\right)}+\frac{\sqrt{5}+2}{\sqrt{5}\left(\sqrt{5}+2\right)}\)

\(=\frac{\sqrt{5}-2-\sqrt{5}+\sqrt{5}+2}{\sqrt{5}\left(\sqrt{5}+2\right)}\)

\(=\frac{\sqrt{5}}{\sqrt{5}\left(\sqrt{5}+2\right)}\)

\(=\frac{1}{\sqrt{5}+2}\)

b) Ta có: \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{\sqrt{6}\left(\sqrt{3}+1\right)}{\sqrt{6}\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}+\frac{\sqrt{2}\cdot\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}{\sqrt{6}\cdot\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}-\frac{2\sqrt{2}\cdot\left(\sqrt{3}+2\right)}{\sqrt{6}\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}\)

\(=\frac{3\sqrt{2}+\sqrt{6}+\sqrt{2}\cdot\left(5+3\sqrt{3}\right)-2\sqrt{6}-4\sqrt{2}}{\sqrt{6}\cdot\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}\)

\(=\frac{-\sqrt{2}-\sqrt{6}+5\sqrt{2}+3\sqrt{6}}{\sqrt{6}\cdot\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}\)

\(=\frac{4\sqrt{2}+2\sqrt{6}}{\sqrt{6}\cdot\left(\sqrt{3}+1\right)\left(\sqrt{3}+2\right)}\)

\(=\frac{2\sqrt{2}\cdot\left(2+\sqrt{3}\right)}{\sqrt{3}\cdot\sqrt{2}\cdot\left(2+\sqrt{3}\right)\left(\sqrt{3}+1\right)}\)

\(=\frac{2}{3+\sqrt{3}}\)


Các câu hỏi tương tự
Vivian Duong
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
Chou Chou
Xem chi tiết
Nguyễn Thanh Hòa
Xem chi tiết
Trần Hiền Ngọc
Xem chi tiết
Phương Minh
Xem chi tiết
trinh mai
Xem chi tiết
Linh Nguyen
Xem chi tiết
Alice dono
Xem chi tiết