Đặt `A=1/3+1/(3^2)+...+1/(3^100)`
`3A=1+1/3+...+1/(3^99)`
`3A-A=(1+1/3+...+1/(3^99))-(1/3+1/(3^2)+...+1/(3^100))`
`2A=1-1/(3^100)`
`A=(1-1/(3^100))/2`
Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(3\cdot A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(3A-A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)
\(2A=1-\dfrac{1}{3^{100}}\)
\(\Rightarrow A=\dfrac{3^{100}-1}{3^{100}}:2=\dfrac{3^{100}-1}{2\cdot3^{100}}\)
#\(Toru\)