a) Xét tg MAB và tg MDC có:
AM = DM (gt)
MB = MC (suy từ gt)
gAMB = gDMC (đđ)
=> tgMAB = tgMDC (c.g.c)
b) Đề nghị sửa thành: AB = CD và AB // CD.
Vì tgMAB = tgMDC (câu a)
=> AB = CD (2 cạnh tt/ư)
và \(\widehat{ABM}\) = \(\widehat{DCM}\)( 2 góc t/ư)
mà 2 góc này ở vị trí so l trong nên AB // CD.
c) Nối B với D.
Xét tgAMC và tgDMB có:
AM = DM (gt)
gAMC = gDMB (đđ)
CM = BM (suy từ gt)
=> tgAMC = tgDMB (c.g.c)
=> AC = DB (2 canjht /ư)
Xét tgBAC và tgCDB có:
BA = CD (câu b)
BC chung
AC = DB (c/m trên)
=> tgBAC = tgCDB (c.c.c)
d) Sai đề.