rút gọn biểu thức :
G = \(\dfrac{1^{2010}+2^{2010}+3^{2010}+...+10^{2010}}{2^{2010}+4^{2010}+6^{2010}+...+20^{2010}}\)
Tính tổng : A=\(\dfrac{2010}{2}+\dfrac{2010}{6}+\dfrac{2010}{12}+.....+\dfrac{2010}{9900}\)
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha
cho các số a,b,c,d khác 0 và các số x,y,z,t thỏa mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
(x2010 + y2010 + z2010 + t2010)/(a2 +b2 + c2 + d2)=x2010/a2 + y2010/b2 + z2010/c2 + t2010/d2
( biết a,b,c,d #0)
\(\left|3x-5\right|=2009\left(2010^{2009}+2010^{2008}+...+2010+1\right)-2010^{2010}+5\)
cho các số a,b,c,d khác 0, tính: T= x2011+ y2011+ z2011+ t2011
biết x,y,z,t thỏa mãn: \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
cho các số a,b,c,d\(\ne\)0 . tính:
T= \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
biết x,y,z,t thỏa mãn:
\(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2o1o}}{c^2}+\dfrac{t^{2010}}{d^2}\)
\(cho A=1-1/2^2-1/3^2-...-1/2010^2 Chứng minh A>1/2010\)