1) Các cách viết số 25 dưới dãng lũy thừa là: 251; 52; (-5)2
2) a) \(\left(x-\frac{1}{2}\right)^2=0\)
=> \(x-\frac{1}{2}=0\)
=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
b) (x - 2)2 = 1
=> \(\left[\begin{array}{nghiempt}x-2=1\\x-2=-1\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=3\\x=1\end{array}\right.\)
Vậy \(x\in\left\{3;1\right\}\)
c) (2x - 1)3 = -8
=> (2x - 1)3 = (-2)3
=> 2x - 1 = -2
=> 2x = -2 + 1
=> 2x = -1
=> \(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=16\)
=> \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{array}\right.\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{3}{4}\right\}\)
1) Các cách viết số 25 dưới dãng lũy thừa là: 251; 52; (-5)2
2) a) (x−12)2=0(x−12)2=0
=> x−12=0x−12=0
=> x=12x=12
Vậy x=12x=12
b) (x - 2)2 = 1
=> [x−2=1x−2=−1[x−2=1x−2=−1=> [x=3x=1[x=3x=1
Vậy x∈{3;1}x∈{3;1}
c) (2x - 1)3 = -8
=> (2x - 1)3 = (-2)3
=> 2x - 1 = -2
=> 2x = -2 + 1
=> 2x = -1
=> x=−12x=−12
Vậy x=−12x=−12
d) (x+12)2=16(x+12)2=16
=> [x+12=14x+12=−14[x+12=14x+12=−14=> [x=−14x=−34[x=−14x=−34
Vậy x∈{−14;−34}