a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
*\(x-2=1\Rightarrow x=3\)
*\(x-2=-1\Rightarrow x=1\)
Vậy x = 3; x = 1
c) \(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
Vậy x = \(\frac{-1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(x+\frac{1}{2}=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{1}{2}\)
\(\Rightarrow x=\frac{-1}{4}\)
Vậy x = \(\frac{-1}{4}\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=-2+1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
\(\left(x-2\right)^2=1\)
\(\left(x-2\right)^2=\left(\pm1\right)^2\)
\(\begin{cases}x-2=1\\x-2=-1\end{cases}\)
\(\begin{cases}x=1+2\\x=-1+2\end{cases}\)
\(\begin{cases}x=3\\x=1\end{cases}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{1}{4}\right)^2\)
\(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\)
\(\begin{cases}x=\frac{1}{4}-\frac{1}{2}\\x=-\frac{1}{4}-\frac{1}{2}\end{cases}\)
\(\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)