Đặt \(A=xy+x^2y^2+x^3y^3+...+x^{100}y^{100}\)
\(\Rightarrow A=xy+\left(xy\right)^2+\left(xy\right)^3+...+\left(xy\right)^{100}\)
\(\Rightarrow A=\left(-1\right)+1+\left(-1\right)+...+1\) ( 100 số hạng )
\(\Rightarrow A=\left[\left(-1\right)+1\right]+\left[\left(-1\right)+1\right]+...+\left[\left(-1\right)+1\right]\) ( 50 cặp số )
\(\Rightarrow A=0\)
Vậy A = 0