1. Trên các cạnh BC, CA, AB của tam giác ABC theo thứ tự lấy các điểm \(A_1;B_1;C_1\) sao cho \(\frac{A_1B}{A_1C}=\frac{B_1C}{B_1A}=\frac{C_1A}{C_1B}=k>0\). Trên các cạnh \(B_1C_1;C_1A_1;A_1B_1\) của tam giác \(A_1B_1C_1\) theo thứ tự lấy các điểm \(A_2;B_2;C_2\) sao cho \(\frac{A_2B_1}{A_2C_1}=\frac{B_2C_1}{B_2A_1}=\frac{C_2A_1}{C_2B_1}=\frac{1}{k}\).
Chứng minh rằng: Các tam giác \(ABC\) và \(A_2B_2C_2\) có các cạnh tương ứng song song
2. Trên cạnh BC của tam giác ABC lấy điểm M. Đường thẳng \(\Delta\) cắt các đoạn AB, AC, AM lần lượt tại \(B',C',M'\).
Chứng minh: \(BC.\frac{AM}{AM'}=MC.\frac{AB}{AB'}+MB.\frac{AC}{AC'}\)
Cách làm khác cho bài 2:
Hình vẽ: post-185288-0-41757700-1601727315.png (610×487).
Nếu \(\Delta\) // BC thì ta dễ có đpcm.
Xét trường hợp đường thẳng \(\Delta\) không song song với BC:
Gọi A' là giao điểm của \(\Delta\) và BC.
Áp dụng định lý Menelaus cho \(\Delta A'BB'\) với sự thẳng hàng của A, C, C' ta có:
\(\frac{A'C}{BC}.\frac{BA}{B'A}.\frac{B'C'}{A'C'}=1\)
\(\Rightarrow\frac{AB}{AB'}=\frac{A'C'.BC}{B'C'.A'C}\). (1)
Áp dụng định lý Menelaus cho \(\Delta A'MM'\) với sự thẳng hàng của A, C, C' ta có:
\(\frac{A'C}{MC}.\frac{MA}{M'A}.\frac{M'C'}{A'C'}=1\).
\(\Rightarrow MC=\frac{MA.M'C'.A'C}{M'A.A'C'}\). (2)
Nhân vế với vế của (1) và (2) ta được:
\(MC.\frac{AB}{AB'}=BC.\frac{MA}{MA'}.\frac{M'C'}{B'C'}\). (*)
Tương tự, \(MB.\frac{AC}{AC'}=BC.\frac{MA}{MA'}.\frac{M'B'}{B'C'}\). (**)
Cộng vế với vế của (*) và (**) ta có đpcm.
2: Cho tam giác ABC và điểm M thuộc đoạn BC. Một đường thẳng bất kì cắt các đoạn AB, AC, AM tại các điểm B',C',M'. - Hình học - Diễn đàn Toán học