Hình bạn tự vẽ :
AM=AB+BM
=AB+2/3BC
=AB +2/3(BA+AC)
=AB-2/3AB+2/3C
= 1/3 AB + 2/3AC
Hình bạn tự vẽ :
AM=AB+BM
=AB+2/3BC
=AB +2/3(BA+AC)
=AB-2/3AB+2/3C
= 1/3 AB + 2/3AC
Cho ΔABC có M nằm trên cạnh BC sao cho CM = \(\frac{1}{2}\) BC K là trung điểm AM, đặt \(\overrightarrow{BA}=\overrightarrow{a}\) , \(\overrightarrow{BC}=\overrightarrow{c}\) . Chứng minh: \(\overrightarrow{BK}=\frac{1}{2}\overrightarrow{a}+\frac{1}{3}\overrightarrow{c}\) . Gọi I là điểm trên cạnh AC sao cho \(\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}\) . Chứng minh : B, I, K thẳng hàng.
Cho tam giác ABC, M là một điểm trên cạnh BC sao cho MB=2MC
1) Biểu thị \(\overrightarrow{AM}\) theo \(\overrightarrow{AB}\) và\(\overrightarrow{AC}\)
2) Chứng minh \(\overrightarrow{v}=\overrightarrow{NB}+\overrightarrow{NC}-2\overrightarrow{NA}\) không phụ thuộc vào vị trí điểm N. Hãy dựng \(\overrightarrow{AD}=\overrightarrow{v}\)
3) Gọi K là trung điểm cạnh AC, điểm I nằm trên đoạn AM sao cho \(\overrightarrow{AI}=x\overrightarrow{AM}\). Tìm số x để ba điểm B, I, K thẳng hàng.
4) Cho điểm K di động thỏa mãn: \(\overrightarrow{KE}=2\overrightarrow{KA}+2\overrightarrow{KB}-\overrightarrow{KC}\). Chứng minh KE đi qua một điểm cố định
Cho tam giác ABC vuông tại A biết AB=a ;AC=\(a\sqrt{3}\) ;M nằm trên đoạn AC sao cho \(\overrightarrow{AC}=3\overrightarrow{AM}\) và N là trung điểm của BC.
1)Chứng minh rằng \(\overrightarrow{MN}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\) .Từ đó suy ra MN vuông góc với BC
2)Gọi G là trọng tâm tam giác BMN,K nằm trên đoạn AB sao cho \(BK=\frac{4}{13}AB\) .Chứng minh rằng C;G;K thẳng hàng
Cho tam giác ABC , I nằm trên AC sao cho CI = \(\frac{1}{4}\) CA. J thỏa mãn \(\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}\). chứng minh
a. \(\overrightarrow{BC}=\frac{3}{4}\overrightarrow{AC}-\overrightarrow{AB}\)
b, B , I ,J thẳng hàng
Cho tam giác ABC , gọi M, N lần lượt là trung điểm AB, AC . Trên đường thẳng MN, BC lần lượt lấy điểm E, F sao cho \(\overrightarrow{ME}=-\frac{1}{2}\overrightarrow{NE},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}\) chứng minh 3 đểm A,E,F thẳng hàng
1. Cho \(\Delta ABC\) . gọi M là điểm thuộc cạnh AB, n là điểm thuộc cạnh AC sao cho \(AM=\frac{1}{2}AB\) , \(AN=\frac{3}{4}AC\) . gọi O là giao điểm của CM và BN. trên đường thẳng BC lấy E. đặt \(\overrightarrow{BE}=x\overrightarrow{BC}\)
a) Phân tích \(\overrightarrow{AO}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)
b) tìm x để A,E,O thẳng hàng
2. cho tam giác ABC đều cạnh \(2\sqrt{3}\) , d là đường thẳng qua B và tạo với AB 1 góc 600 \(\left(C\notin\Delta\right)\) . tìm GTNN của \(A=\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
1. Cho tam giác ABC có 3 trung tuyến là AM, BN, CP. Chứng minh rằng
a) \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC tìm điểm M thỏa mãn:
a) \(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{BC}\)
Cho tam giác ABC và M,N lần lượt là trung điểm AB,AC. Gọi E,F thỏa mãn \(\overrightarrow{ME}=\frac{1}{3}\overrightarrow{MN};\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}\).
Chứng minh A,E,F thẳng hàng.