\(\dfrac{2^5.15^3}{6^3.10^2}=\dfrac{2^5.3^3.5^3}{2^3.3^3.2^2.5^2}=5\)
\(\dfrac{2^5.15^3}{6^3.10^2}=\dfrac{2^5.3^3.5^3}{2^3.3^3.2^2.5^2}=5\)
1) \(\dfrac{2^5.15^3}{6^3.10^2}\)
1) thực hiện phép tính
a)\(\dfrac{2^4.2^6}{\left(2^5\right)^2}.2008\)
b)\(\dfrac{2^5.15^3}{6^3.10^2}\)
Tính x, y
\(3x=y\); \(5y=4z\) và \(6x+7y+8z=456\)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\) và \(2x+3y-z=-14\)
Thực hiện phép tính:
\(\dfrac{2^4.2^6}{\left(2^5\right)^2}\)-\(\dfrac{2^5.15^3}{6^3.10^2}\)
Tính bằng cách hợp lí : \(\dfrac{15^3+5.15^2-5^3}{18^3+6.18^2-6^3}\)
\(tính:\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{7}-\dfrac{1}{6}+\dfrac{1}{5}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{2}\)
\(\left[18\dfrac{1}{6}-\left(0,06:7\dfrac{1}{2}+3\dfrac{2}{5}\cdot0,38\right)\right]:\left(19-2\dfrac{2}{3}\cdot4\dfrac{3}{4}\right).Tính\)
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13)
2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Tìm số nguyên x, nếu biết
a, \((\dfrac{1}{2}-\dfrac {1}{6})3^x +3^{x+2}= 3^{16}+3^{13}\)
b, \((\dfrac {1}{2}-\dfrac{1}{3}).6^x +6^{x+2}= 6^{15}+6^{18}\)
c, \((\dfrac{1}{3}+\dfrac{1}{6})2^{x+3} -2^x = 2^{22}-2^{20}\)