1)
a) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
=> \(x-2\) và \(x+\frac{2}{3}\) cùng dấu.
Ta có 2 trường hợp:
TH1:
\(\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\) => \(x>2\left(TM\right).\)
TH2:
\(\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\) => \(x< -\frac{2}{3}\left(TM\right).\)
Vậy \(x>2\) và \(x< -\frac{2}{3}.\)
Mình chỉ làm được thế thôi nhé bạn.
Chúc bạn học tốt!
1.b)
Ta có \(VT=\left(x-2,5\right)^{20}+\left(y+3,2\right)^{10}\ge0\forall x,y\)
Nên để xảy ra đẳng thức tức là để tìm được x thỏa mãn đề bài thì:
\(\left\{{}\begin{matrix}\left(x-2,5\right)^{20}=0\\\left(y+3,2\right)^{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2,5\\y=-3,2\end{matrix}\right.\)
Vậy...
a,\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x>\frac{-2}{3}\end{matrix}\right.\)