Lời giải:
a)
Trước hết để \((-2;+\infty)\cap (-\infty; m) \neq \varnothing \) thì $m>-2$
Khi đó: \((-2;+\infty)\cap (-\infty; m)=(-2;m)\)
Để tập này có chứa đúng 3 số nguyên thì $m=2$
b)
Để $(-1;4)\cup (m;6)=(-1;6)$ thì $-1\leq m< 4$
Lời giải:
a)
Trước hết để \((-2;+\infty)\cap (-\infty; m) \neq \varnothing \) thì $m>-2$
Khi đó: \((-2;+\infty)\cap (-\infty; m)=(-2;m)\)
Để tập này có chứa đúng 3 số nguyên thì $m=2$
b)
Để $(-1;4)\cup (m;6)=(-1;6)$ thì $-1\leq m< 4$
Cho \(A=(-\infty;1],B=[1;+\infty);C=(0;1]\)
Kết quả nào sau đây sai
A :\(\left(A\cup B\right)/C=(-\infty;0]\cup\left(1;+\infty\right)\)
B : \(A\cap B\cap C=\left\{-1\right\}\)
C:\(A\cup B\cup C=\left(-\infty;+\infty\right)\)
D:\((-\infty;-1]\cup\left(3;+\infty\right)\)
Cho A=(m+1, 2m-3)
B=(-\(\infty\),-1)\(\cup\)(3,5)
Tìm m sao cho A\(\cap\)B=\(\varnothing\)
Tìm m sao cho:
a, \(A\cup B=R\) biết \(A=(-\infty;3];B=[m;+\infty)\)
b, \(C\cup D\) là một khoảng (tùy theo m xác định khoảng đó), biết \(C=\left(m;m+2\right);D=\left(-3;1\right)\)
Cho tập hợp \(A=\left[m-1;\frac{m+1}{2}\right]\) và \(B=\left(-\infty;-2\right)\cup[2;+\infty)\). Tìm m để
a) \(A\subset B\)
b) \(A\cap B=\phi\)
Cho \(A=\left(-\infty;3\right),B=[-3;+\infty),C=[-3;5)\) Tìm \(C\cap\left(A\cup B\right)\)
Biểu diễn nó trên trục số nữa nha !
Cho \(A=\left(-\infty;2\right)\cup\left(5;8\right)\)
\(B=[m;m+4)\)
Tìm m để \(A\cap B\ne\varnothing\)
Cho A = [2 ; 4) ; B = ( - \(\infty\) ; m ]
a) Tìm m để A \(\cap\) B = \(\varnothing\)
b) Tìm m để A \(\cap\) B \(\ne\) \(\varnothing\)
c) Tìm m để A \(\subset\) B
*Cần gấp làm ơn giúp mình với*
Cho 2 tập hợp : A = \(\left[2m-1;-\infty\right];B=\left(-\infty;m+3\right)\)A\(\cap\)B # \(\varnothing\) timf m khi và chir khi
Xác định tập hợp
A = ( -3;5] \(\cup\) [8;10] \(\cup\) [2;8)
B = [0;2] \(\cup\) (\(-\infty;5\)] \(\cup\left(1;+\infty\right)\)
C = [ -4;7] \(\cup\) (0;10)
D = ( \(-\infty;3\) ] \(\cup\left(-5;+\infty\right)\)
E = \(\left(3;+\infty\right)\ \)\ ( \(-\infty;1\)]
F = ( 1;3] \ [0;4)