1) D = x2 - 7x + 6
D = x2 - 2.\(\dfrac{7}{2}x+\dfrac{49}{4}+6-\dfrac{49}{4}\)
D = \(\left(x-\dfrac{7}{2}\right)^2\) - \(\dfrac{25}{4}\)
Do : \(\left(x-\dfrac{7}{2}\right)^2\)≥ 0 ∀x
⇒ \(\left(x-\dfrac{7}{2}\right)^2\) - \(\dfrac{25}{4}\) ≥ - \(\dfrac{25}{4}\)
⇒DMIN = - \(\dfrac{25}{4}\) ⇔ x = \(\dfrac{7}{2}\)
E = 4x2 - 7x + 8
E = 4( x2 - \(2.\dfrac{7}{8}x+\dfrac{49}{64}\)) - \(\dfrac{49}{16}\) + 8
E = 4( x - \(\dfrac{7}{8}\))2 + \(\dfrac{79}{16}\) ≥ \(\dfrac{79}{16}\)
⇒ EMIN = \(\dfrac{79}{16}\) ⇔ x = \(\dfrac{7}{8}\)
Làm mẫu:
Câu 1:
\(G=5x^2-7x+8\\ =5x^2-7x+\dfrac{49}{20}+\dfrac{111}{20}\\ =\left(5x^2-7x+\dfrac{49}{20}\right)+\dfrac{111}{20}\\ =5\left(x^2-\dfrac{7}{5}x+\dfrac{49}{100}\right)+\dfrac{111}{20}\\ =5\left(x-\dfrac{7}{10}\right)^2+\dfrac{111}{20}\)
Do \(\left(x-\dfrac{7}{10}\right)^2\ge0\forall x\)
\(\Rightarrow5\left(x-\dfrac{7}{10}\right)^2\ge0\forall x\\ \Rightarrow G=5\left(x-\dfrac{7}{10}\right)^2+\dfrac{111}{20}\ge\dfrac{111}{20}\forall x\)
Dấu \("="\) xảy ra khi:
\(\left(x-\dfrac{7}{10}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{10}=0\\ \Leftrightarrow x=\dfrac{7}{10}\)
Vậy \(G_{Min}=\dfrac{111}{20}\) khi \(x=\dfrac{7}{10}\)
Câu 2:
\(C=-7x^2+6x+5\\ =-7x^2+6x-\dfrac{9}{7}+\dfrac{44}{7}\\ =-\left(7x^2-6x+\dfrac{9}{7}\right)+\dfrac{44}{7}\\ =-7\left(x^2-\dfrac{6}{7}x+\dfrac{9}{49}\right)+\dfrac{44}{7}\\ =-7\left(x-\dfrac{3}{7}\right)^2+\dfrac{44}{7}\)
Do \(-7\left(x-\dfrac{3}{7}\right)^2\le0\forall x\)
\(\Rightarrow C=-7\left(x-\dfrac{3}{7}\right)^2+\dfrac{44}{7}\le\dfrac{44}{7}\forall x\)
Dấu \("="\) xảy ra khi:
\(-7\left(x-\dfrac{3}{7}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{7}=0\\ \Leftrightarrow x=\dfrac{3}{7}\)
Vậy \(C_{Max}=\dfrac{44}{7}\) khi \(x=\dfrac{3}{7}\)