1 hàm số y = ax^4+bc^2+c(a#0) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng
a . a>0,b<0 ,c \(\le\) 0 B a<0,b,0,c<0 C a>0,b\(\ge\) 0,c>0 D a>0,b\(\ge\)0,c,0
2 đồ thị nào dưới đây có tiệm cận ngang là đường thẳng y=1
A y=1 B y=\(\frac{1-x}{2-x}\) C y= \(\frac{x-1}{x^2+1}\) D y=\(\frac{1}{x-1}\)
3 tìm một nguên hàm F(x) của hàm số f(x) =\(\frac{x^2-1}{x^2}\) biết F(1)=0
4 cho lăng trụ đứng ABCD .\(A^,B^,C^,D^,\) có ABCD là hình hoi cạnh 2a, ABD=\(60^0\) , \(A^,B^,BA\) là hình vuông . Tính thể tích lăng trụ ABCD.\(A^,B^,C^,D^,\)
5Tính diện tích toàn phẩn của hình trụ có thiết diện qua trục là hình vuông cạnh 2a
6 Tìm số thực x,y thỏa (x+y)+(2x-y)i=3-6i
7 trong ko gian Oxyz, cho điểm I(1;2;4) và mặt phẳng (P) :2x+2y+z-1=0 . Mặt cầu tâm I và tiếp xúc với mp (P) có phuong trình là
8 tìm số gaio điểm của đồ thị hàm số y=x^4-3x^2-5 và trục hoành
A 2 B. 3 C. 1 D.4
9 Đặt t =5^x hì bất phương trình \(5^{2x}-3.5^{x+2}+32< 0\) trở thành bất pt nào
A \(t^2-75t+32< 0\) B \(t^2-6t+32< 0\) C \(T^2-3t+32< 0\) D \(t^2-16t+32< 0\)
10 trong ko gian oxyz, cho điểm A(1;-1;3),B(-3;0;-4) .Phương trình nào sau đây là pt chính tắc của đường thẳng qua A vÀ B
A \(\frac{X+3}{4}=\frac{Y}{-1}=\frac{Z-4}{3}\) B\(\frac{X+3}{1}=\frac{Y}{-1}=\frac{Z+4}{3}\) C\(\frac{X+3}{4}=\frac{Y+1}{-1}=\frac{Z+4}{7}\) D \(\frac{X+3}{-4}=\frac{Y-1}{-1}=\frac{Y+3}{7}\)
11 trong ko gian Oxyz , cho 2 vecto \(\overline{a}\left(1,m,-1\right)\),\(\overline{b}\left(2;1;3\right)\). tìm m để \(\overline{a}\perp\overline{b}\)
1.
Từ đồ thị \(\Rightarrow\left\{{}\begin{matrix}a>0\\ab\ge0\\c< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a>0\\b\ge0\\c< 0\end{matrix}\right.\)
2.
\(\lim\limits_{x\rightarrow\infty}\frac{1-x}{2-x}=1\Rightarrow\) đồ thị \(y=\frac{1-x}{2-x}\) có TCN \(y=1\)
3.
\(F\left(x\right)=\int\frac{x^2-1}{x^2}dx=\int\left(1-\frac{1}{x^2}\right)dx=x+\frac{1}{x}+C\)
\(F\left(1\right)=0\Rightarrow1+\frac{1}{1}+C=0\Rightarrow C=-2\)
\(\Rightarrow F\left(x\right)=x+\frac{1}{x}-2\)
4.
\(A'A=AB=2a\)
\(\widehat{ABD}=60^0\Rightarrow\Delta ABD\) đều \(\Rightarrow BD=AB=2a\)
\(AC=\sqrt{AB^2+BC^2-2AB.BC.cos120^0}=2a\sqrt{3}\)
\(\Rightarrow V=AA'.AC.BD=8a^3\sqrt{3}\)
5.
\(R=a;h=2a\)
\(\Rightarrow S=2\pi R.h=4\pi a^2\)
6.
\(\left(x+y\right)+\left(2x-y\right)i=3-6i\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
7.
\(R=d\left(I;\left(P\right)\right)=\frac{\left|2.1+2.2+4-1\right|}{\sqrt{2^2+2^2+1^2}}=3\)
Pt mặt cầu: \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=9\)
8.
\(x^4-3x^2-5=0\)
Đặt \(x^2=t\ge0\Leftrightarrow t^2-3t-5=0\) (1)
\(t_1t_2=-5< 0\Rightarrow\left(1\right)\) có 2 nghiệm trái dấu => có đúng 1 nghiệm dương => pt đã cho có 2 nghiệm pb
\(\Rightarrow\) Đồ thị hs cắt trục hoành tại 2 điểm
9.
\(5^{2x}-3.5^{x+2}+32< 0\)
\(\Leftrightarrow\left(5^x\right)^2-75.5^x+32=0\)
Đặt \(5^x=t\Rightarrow t^2-75t+32< 0\)
10.
\(\overrightarrow{BA}=\left(4;-1;7\right)\Rightarrow\) đường thẳng AB nhận \(\left(4;-1;7\right)\) là 1 vtcp
Đáp án C là đáp án duy nhất đúng về vtcp, nhưng lại sai về điểm mà đường thẳng đi qua, nên cả 4 đáp án đều sai :)
Pt chính tắc đúng phải là: \(\frac{x+3}{4}=\frac{y}{-1}=\frac{z+4}{7}\)
11.
\(\overrightarrow{a}\perp\overrightarrow{b}\Leftrightarrow\overrightarrow{a}.\overrightarrow{b}=0\)
\(\Leftrightarrow2+m-3=0\Rightarrow m=1\)