a) ĐKXĐ: \(x\notin\left\{4;-1\right\}\)
Ta có: \(\dfrac{2x}{x^2-3x-4}-\dfrac{x}{x+1}=\dfrac{3}{x-4}\)
\(\Leftrightarrow\dfrac{2x}{\left(x-4\right)\left(x+1\right)}-\dfrac{x\left(x-4\right)}{\left(x+1\right)\left(x-4\right)}=\dfrac{3\left(x+1\right)}{\left(x-4\right)\left(x+1\right)}\)
Suy ra: \(2x-x^2+4x=3x+3\)
\(\Leftrightarrow-x^2+6x-3x-3=0\)
\(\Leftrightarrow-x^2+3x-3=0\)
\(\Delta=3^2-4\cdot\left(-1\right)\cdot\left(-3\right)=9-12=-3\)
Vì \(\Delta< 0\) nên phương trình vô nghiệmVậy: \(S=\varnothing\)