Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tú Uyênn

1. Có bao nhiêu cặp số nguyên dương \(\left(m,n\right)\) sao cho \(m+n\le10\) và ứng với mỗi cặp \(\left(m,n\right)\) tồn tại đúng 3 số thực \(\alpha\in\left(-1;1\right)\) thỏa mãn \(2\alpha^m=nln\left(\alpha+\sqrt{\alpha^2+1}\right)\)

A. 7

B. 8

C. 10

D. 9

2. Xét các số thực \(x,y\) thỏa mãn \(2^{x^2+y^2+1}\le\left(x^2+y^2-2x+2\right)4^x\) GTNN của biểu thức \(P=\frac{8x+4}{2x-y+1}\) gần nhất với số nào dưới đây?

A. 1

B. 2

C. 3

D. 4

Ami Mizuno
6 tháng 9 2020 lúc 10:18

Câu 2. Đặt A=x2+y2+1

Nhập \(2^A=\left(A-2x+1\right)4^x\) vào máy tính Casio. Cho x=0.01, tìm A

Máy sẽ giải ra, A=1.02=1+2x

\(\Leftrightarrow x^2+y^2+1=1+2x\)

\(\Leftrightarrow x^2+y^2-2x=1\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=1\) (C)

Có (C) là đường tròn tâm (1,0) bán kính R=1

Lại có: P=\(\frac{8x+4}{2x-y+1}\)

\(\Leftrightarrow x\left(2P-8\right)-yP+P-4=0\) (Q)

Có (Q) là phương trình đường thẳng.

Để x,y có nghiệm thì đường thẳng và đường tròn giao nhau nghĩa là d(I,(Q))\(\le R\)

\(\Leftrightarrow\frac{\left|x\left(2P-8\right)-yP+P-4\right|}{\sqrt{\left(2P-8\right)^2+P^2}}\le1\)

\(\Leftrightarrow\frac{\left|2P-8+P-4\right|}{\sqrt{\left(2P-8\right)^2+1}}\le1\)

\(\Leftrightarrow\left(3P-12\right)^2\le5P^2-32P+64\)

\(\Leftrightarrow4P^2-40P+80\le0\)

\(\Leftrightarrow5-\sqrt{5}\le P\le5+\sqrt{5}\)

Vậy GTNN của P gần số 3 nhất. Chọn C


Các câu hỏi tương tự
AllesKlar
Xem chi tiết
Tú Uyênn
Xem chi tiết
Nguyen Trung Kien
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Pham Tien Dat
Xem chi tiết
AllesKlar
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
Pham Tien Dat
Xem chi tiết
AllesKlar
Xem chi tiết