1. Chứng minh rằng nếu a = x3y; b = x2y2; c = xy3 thì với bất kì số hữu tỉ x và y nào ta cũng có: ax + b2 - 2x4y4 = 0?
2. Chứng minh đẳng thức: 1 + 2 + 22 + 23 + ... + 299 + 2100 = 2101 - 1.
3. Tìm một số có 5 chữ số, là bình phương của một số tự nhiên và được viết bằng các chữ số 0; 1; 2; 2; 2.
Giúp mình với nha, đang cần gấp ^.^
Câu 2 :
Đặt : \(A=1+2+2^2+2^3+....+2^{99}+2^{100}\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4+...+2^{100}+2^{201}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+....+2^{100}+2^{101}\right)-\left(1+2+2^2+...+2^{99}+2^{100}\right)\)\(\Leftrightarrow A=2^{101}-1\)
Vậy ta có điều phải chứng minh.
Câu 3 :
Bình phương của 1 số tự nhiên không thể có tận cùng là \(0\) hoặc \(2\)
Vậy số phải tìm chỉ có thể có tận cùng là \(1.\)
Chữ số \(0\) lại không thể ở hàng chục nghìn.
\(\Rightarrow\) Xét 3 số: \(22201,22021,20221\)
Trong đó : \(22201=149^2\) là bình phương của số tự nhiên.
Vậy số phải tìm là \(22201\).