1. Chứng minh :
a) ( x + y ) . ( x\(^2\) - xy + y\(^2\) ) = x\(^{2^{ }}\) + y\(^2\)
b) ( x - y ) . ( x\(^2\) + xy + y\(^2\) ) = x\(^3\) - y\(^3\)
2. Viết sang dạng tích :
a) 16x\(^2\) - 24xy + 9y\(^2\)
b) ( x - 2 )\(^2\) - y\(^2\)
3 . Tìm x :
a) ( x + 2 ) ( x\(^2\) - 2x + 4 ) + x ( x - 5 ) . ( x + 5 ) = -17
b) 25x\(^2\) - 2 = 0
MÌNH CHỈ MỚI HỌC ĐẾN CÔNG THỨC 5 CỦA HẰNG ĐẲNG THỨC ĐẮNG NHỚ NÊN CÁC BẠN GIẢI ĐÚNG NHƯ 5 CÔNG THỨC HỘ MÌNH NHÉ !! MÌNH CẢM ƠN CÁC BẠN TRƯỚC Ạ !!!!!! ~
Bài 1
a) \(\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)\)
\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)
\(=x^3+y^3\left(Đpcm\right)\)
b) \(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\left(Đpcm\right)\)
Bài 2
a) \(16x^2-24xy+9y^2\)
\(=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2\)
\(=\left(4x-3y\right)^2\)
b) \(\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
Bài 3
a) \(\left(x+2\right)\left(x^2-2x+4\right)+x\left(x-5\right)\left(x+5\right)=-17\)
\(\Rightarrow x^3+2^3+x\left(x^2-5^2\right)=-17\)
\(\Rightarrow x^3+8+x^3-25x=-17\)
\(\Rightarrow2x^3-25x=-17-8=-25\)
Hình như câu này đề sai rồi đấy bạn
b) \(25x^2-2=0\)
\(\Rightarrow25x^2=2\)
\(\Rightarrow x^2=\dfrac{2}{25}\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{2}{25}}\\x=-\sqrt{\dfrac{2}{25}}\end{matrix}\right.\)
1.
\(a.\left(x+y\right).\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)\(b.\left(x-y\right)\left(x^2+xy+y^2\right)=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3\)2.
\(a.16x^2-24xy+9y^2=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2=\left(4x-3y\right)^2\)\(b.\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
3.
\(b.25x^2-2=0\)
\(\Leftrightarrow25x^2=2\Leftrightarrow x^2=\dfrac{2}{25}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{2}{25}}\\x=-\sqrt{\dfrac{2}{25}}\end{matrix}\right.\)