Rút gọn biểu thức:
a) x (1 - x) + 6(x + 3) (x + 3)
b) (2 - 3x) (2 + 3x) - (x +5) (x - 5)
c) (3x + 1) (x +5) - (x - 1) (x + 1)
d) (2 - 3x) (2x + 3) + 6(x - 1)\(^2\)
e) x(5 - x) - (2x + 2) (3x + 2) - (x - 2) (x + 2)
f) (2 - x) (2 + x) - 2x( x - 7) + x(x + 1)
Chứng minh đẳng thức:
a) (x + y\(^2\)) (x\(^2\) - y) - (x\(^2\) +xy + y\(^2\)) (x - y) - x\(^2\)y\(^2\) = -xy
b) (x + 3y)\(^2\) - (x + 3y) (x - 3y) - 6xy = 18y\(^2\)
Bài 1. Rút gọn:
\(a, x\left(1-x\right)+6\left(x+3\right)\left(x+3\right)\)
\(=x-x^2+6\left(x^2+6x+9\right)\)
\(=x-x^2+6x^2+36x+54\)
\(=5x^2+37x+54\)
\(b, \left(2-3x\right)\left(2+3x\right)-\left(x+5\right)\left(x-5\right)\)
\(=\left(4-9x^2\right)-\left(x^2-25\right)\)
\(=-10x^2+29\)
\(c, \left(3x+1\right)\left(x+5\right)-\left(x-1\right)\left(x+1\right)\)
\(=3x^2+15x+x+5-x^2+1\)
\(=2x^2+16x+6\)
\(d,\left(2-3x\right)\left(2x+3\right)+6\left(x-1\right)^2\)
\(=\left(4x+6-6x^2-9x\right)+6\left(x^2-2x+1\right)\)
\(=4x+6-6x^2-9x+6x^2-12x+6\)
\(=-17x+12\)
\(e, x\left(5-x\right)-\left(2x+2\right)\left(3x+2\right)-\left(x-2\right)\left(x+2\right)\)
\(=5x-x^2-\left(6x^2+4x+6x+4\right)-\left(x^2-4\right)\)
\(=5x-x^2-6x^2-4x-6x-4-x^2+4\)
\(=-8x^2-5x\)
Bài 2:
a: VT\(=x^3-xy+x^2y^2-y^3-x^3+y^3-x^2y^2\)
=-xy
b: \(VT=x^2+6xy+9y^2-x^2+9y^2-6xy=18y^2=VP\)