Bài 1:
Ta có: (2a-2b)2 lớn hơn hặc bằng 0
<=> 4a2-8ab+4b2 lớn hơn hoặc bằng 0
<=> 5a2-a2-8ab+20b2-16b2 lớn hơn hoặc bằng 0
<=> 5a2+20b2 lớn hơn hoặc bằng a2+8ab+16b
<=> 5(a2+4b2) lớn hơn hoặc bằng (a+4b)2
<=> 5(a2+4b2) lớn hơn hoặc bằng 1 [ Thay (a+4b)2 =1]
3)
\(a=b+1\Leftrightarrow a+1>b+1\Leftrightarrow a>b+1-1\\ \Leftrightarrow a>b\)
bài 2:
Giả sử 2(x2+y2)<1 => 2(x2+y2)-1<0
=> \(2\left(x^2+y^2-\dfrac{1}{2}\right)< 0\)
=> \(2\left(x^2+2xy+y^2-2xy-\dfrac{1}{2}\right)< 0\)
=> \(2\left[\left(x+y\right)^2-2xy-\dfrac{1}{2}\right]< 0\) (Thay x+y=1)
=> \(2\left(1-2xy-\dfrac{1}{2}\right)< 0\)
=> \(2\left(\dfrac{1}{2}-2xy\right)< 0\) => 1-2xy<0
=> 1<2xy <=> 12 <2xy <=> (x+y)2 <2xy (vô lí)
Vậy 2(x2+y2) phải lớn hơn hoặc bằng 1
Bài 4: Giả sử (x+1)2 <4x => (x+1)2 -4x < 0
<=> x2+2x+1-4x < 0 <=> x2-2x+1 < 0
<=> (x-1)2 < 0 (vô lí nên gải sử là sai)
Vậy (x+1)2 phải lớn hơn hoặc bằng 4x