\(x^2-2mx+m^2-1=0\)
\(\text{Đặt }\left\{{}\begin{matrix}x_1^3-2mx_1^2+m^2x_1-2=a\\x_2^3-2mx_2^2+m^2x_2-2=b\end{matrix}\right.\)
\(\text{Suy ra a và b là hai nghiệm của phương trình:}\)
\(X^2-\left(a+b\right)X+ab=0\)
\(\text{Mặt khác, theo định lí Viète }\Rightarrow\left\{{}\begin{matrix}S=2m\\P=m^2-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1^2+x_2^2=S^2-2P=2m^2+2\\x_1^3+x_2^3=S^3-3SP=2m^3+6m\end{matrix}\right.\)
\(\text{Ta có: }\)
\(\text{Đặt }A=\left(x_1^3-2mx_1^2+m^2x_1\right)+\left(x_2^3-2mx_2^2+m^2x_2\right)\)
\(=\left(x_1^3+x_2^3\right)-2m\left(x_1^2+x_2^2\right)+m^2\left(x_1+x_2\right)\)
\(=\left(2m^3+6m\right)-2m\left(2m^2+2\right)+2m^3\)
\(=2m\)
\(\text{Đặt }B=\left(x_1^3-2mx_1^2+m^2x_1\right)\left(x_2^3-2mx_2^2+m^2x_2\right)\)
\(=\left[x_1\left(x_1-m\right)^2\right]\left[x_2\left(x_2-m\right)^2\right]\)
\(=x_1x_2\left[x_1x_2-m\left(x_1+x_2\right)+m^2\right]^2\)
\(=\left(m^2-1\right)\left(m^2-1-2m^2+m^2\right)^2=m^2-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=A-4=2m-4\\ab=B-2A+4=m^2-4m+3\end{matrix}\right.\)
\(\text{Suy ra a và b là hai nghiệm của phương trình:}\)
\(X^2+\left(4-2m\right)X+m^2-4m+3=0\)