Tìm nghiệm nguyên của phương trình a, \(x^2-y^2-x+3y=4\) b, \(2x^2+2y^2-2xy+x+y=10\)
Cho \(x^2-2xy+2y^2-2x+6y+13=0\) Tính N = \(\frac{3x^2y-1}{4xy}\)
Cho 3 số thực a,b,c đôi một khác nhau thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\) Chứng minh \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Tìm số tự nhiên a để \(a+1;4a^2+8a+15;6a^2+12a+7\) đồng thời là số nguyên tố
1 . Cho a,b,c > 0 chứng minh rằng : \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\)
2 . Cho x , y , z > 0 thỏa mãn : \(x+y+z=2\)
Tìm GTNN của \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
3 . Cho các sô dương a , b , c biết \(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\le1\)
4 . Tim giá trị nhỏ nhất của biểu thức : \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Giải hệ:
\(\left\{{}\begin{matrix}x^2+y^2+xy=5\\27x^3+6y^2x=2+y^3+30x^2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\), \(\left\{{}\begin{matrix}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\\2\left(2x+\sqrt{y}\right)=\sqrt{2x+6}-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y-3x-1=3x\sqrt{y}\left(\sqrt{1-x}-1\right)^3\\\sqrt{8x^2-3xy+4y^2}+\sqrt{xy}=4y\end{matrix}\right.\)
Cho các số a,b,c là các số k âm sao cho tổng hai số bất kì đều dương.CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{16\sqrt{ab+bc+ac}}{a+b+c}\ge8\)
1, cho a,b là số thực thỏa 0<a<1 ; 0<b<1 ; a khác b ; và \(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\)
tính giá trị biểu thức Q= \(\sqrt{a^2+b^2}+2019\)
2 Tìm nghiệm nguyen pt \(x^2-4xy+5y^2=2\left(x-y\right)\)
3. cho a,b,c>0 chứng minh \(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
1/CMR
a/\(x^4-2x^3+2x^2-2x+1\ge0\forall x\in R\)
b/cho \(a\ge0,b\ge2,a+b+c=3\). CMR : \(a^2+b^2+c^2\le5\)
c/cho a,b,c >0 . CMR : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\ge4\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
2/ cho \(x,y\ge0,x+y=1\). tìm GTLN,GTNN của A =\(x^2+y^2\)
3/ cho x,y>0 .tìm GTNN của B= \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
1 . Cho các số thực a, b, c dương thỏa mãn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Tính giá trị lớn nhất của biể thức: \(P=\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
2 .
Cho các số thực dương a, b, c thỏa mãn: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)
2 .
Cho x , y là các số thực dương thỏa mãn \(\left(x+1\right)\left(y+1\right)=4xy\) Chứng minh rằng : \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le1\)b1 dùng bđt cô-si cho a,b,c,d là số dương cmr
a)\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge\frac{a+b+c}{2}\)
b)\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{a+d}\ge\frac{a+b+c+d}{2}\)
c)\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c}}>2\)
d)\(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)
b2
a)cho x,y<0 CMR\(\frac{1}{x^2+y^2}\)+\(\frac{1}{xy}\ge6\)
b)cho 0\(\le\)x\(\le\)2CMR\(\left(2x-x^2\right)\left(y-2y^2\right)\le\frac{1}{8}\)
cacs bn giải giùm mk cái mai mk phai nộp r thanks các bn nhìu
Có một số bài bất đẳng thức, bạn nào làm được câu nào cứ làm nhé :)
Câu 1: Cho \(x,y,z>0\)thỏa mãn \(xyz=1\)
Chứng minh rằng : \(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\)
Câu 2: Cho \(a,b,c>0\). Tìm min \(P=\frac{a+3c}{a+2b+c}+\frac{4b}{a+b+2c}-\frac{8c}{a+b+3c}\)
Cây 3: Cho \(a,b,c>-1\). Chứng minh rằng :
\(\frac{1+a^2}{1+b+c^2}+\frac{1+b^2}{1+c+a^2}+\frac{1+c^2}{1+a+b^2}\ge2\)