Lời giải:ĐK: $x>0; x\neq 1$;
\(P=\left[\frac{(\sqrt{x}-1)(x+\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}-\frac{(\sqrt{x}+1)(x-\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}\right]:\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)
\(=\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right):\frac{2(\sqrt{x}-1)}{\sqrt{x}+1}\)
\(=2:\frac{2(\sqrt{x}-1)}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\). Để $P$ nguyên thì $\sqrt{x}-1$ là ước nguyên của $2$
$\Rightarrow \sqrt{x}-1\in\left\{\pm 1;\pm 2\right\}$
$\Rightarrow x\in\left\{0; 2; 9\right\}$
Kết hợp với ĐKXĐ suy ra $x\in\left\{2;9\right\}$