\(n^3-n+18n=\left(n-1\right)n\left(n+1\right)+18n\)
\(\left(n-1\right)n\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên chia hết cho 6
Vậy \(n^3+17n\) chia hết cho 6
b/ \(A=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)
c/ \(\left\{{}\begin{matrix}3x⋮3\\159⋮3\\17⋮̸3\end{matrix}\right.\) \(\Rightarrow y⋮3\Rightarrow y=3k\)
\(\Rightarrow3x+51k=159\Rightarrow x+17k=53\)
\(\Rightarrow\left\{{}\begin{matrix}x=53-17k\\y=3k\end{matrix}\right.\) với \(k\in Z\)