\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a+b+c}{b+c}-1+\dfrac{a+b+c}{c+a}-1+\dfrac{a+b+c}{a+b}-1\)
\(=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3=\dfrac{2010}{3}-3=\dfrac{2001}{3}\)p/s: thiếu đề
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a+b+c}{b+c}-1+\dfrac{a+b+c}{c+a}-1+\dfrac{a+b+c}{a+b}-1\)
\(=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)-3=\dfrac{2010}{3}-3=\dfrac{2001}{3}\)p/s: thiếu đề
Cho các số a, b, c khác 0 thỏa mãn:\(\dfrac{a-b+c}{2b}\)=\(\dfrac{c-a+b}{2a}\)=\(\dfrac{a-c+b}{2c}\)
Tính giá trị biểu thức P=(1+\(\dfrac{c}{b}\)).(1+\(\dfrac{b}{a}\)).(1+\(\dfrac{a}{c}\))
Cho tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) Chứng minh:
1)\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) 2)\(\dfrac{a-b}{a}\)=\(\dfrac{c-d}{c}\)
giải giúp mk vss
Bài 1 Cho \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\left(b\ne0\right)\) CMR \(c=0\)
Bài 2 Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}CMR\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
câu 1 tìm A biết
\(A=\dfrac{a}{b+c}=\dfrac{c}{a+b}=\dfrac{b}{a+c}\)
câu 2
x∈Z để A∈Z
\(A=\dfrac{x+3}{x-2}\)
\(A=\dfrac{1-2x}{x+3}\)
nếu ai giải được mình cho 1 like
1, Cho tỉ lệ thức : \(\dfrac{a}{b}=\dfrac{c}{d}\) , chứng minh rằng :
a, \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
b, \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
c, \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Bài 1: Cho abc = 1 .Tính A= \(\dfrac{a}{ab+a+1}\)+\(\dfrac{b}{bc+b+1}\)+\(\dfrac{c}{ca+c+1}\).
Bài 2: Cho x-y=7 . Tính giá trị biểu thức B= \(\dfrac{3x-7}{2x+y}\)-\(\dfrac{3y+7}{2y+x}\).
Bài 3: Cho a+b+c=2018 và \(\dfrac{1}{a+b}\)+\(\dfrac{1}{b+c}\)+\(\dfrac{1}{c+a}\)=\(\dfrac{1}{2}\). Tính S=\(\dfrac{a}{b+c}\)+\(\dfrac{b}{c+a}\)+\(\dfrac{c}{a+b}\).
Bài 4: Cho 3 số a,b,c khác nhau và khác 0 thỏa mãn điều kiện \(\dfrac{a}{b+c}\)=\(\dfrac{b}{a+c}\)=\(\dfrac{c}{a+b}\)
Tính giá trị biểu thức P=\(\dfrac{b+c}{a}\)+\(\dfrac{a+c}{b}\)+\(\dfrac{a+b}{c}\).
Bài 5: Cho tỉ lệ \(\dfrac{3x-y}{x+y}\)=\(\dfrac{3}{4}\). Tính giá trị tỉ số \(\dfrac{x}{y}\).
Cho abc \(\ne\)0 và \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính P = \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
Nhanh Nhanh nhận like cho câu trả lời hay nhất các bạn ơi
cho a,b,c đôi một khác nhau và thõa mãn\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
tính giá trị của biểu thức P=\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(a+\dfrac{c}{a}\right)\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
chứng minh
a. \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
b. \(\dfrac{a\cdot b}{c\cdot d}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
c.\(\dfrac{2008\cdot a-2009\cdot b}{2009\cdot c+2010\cdot d}=\dfrac{2008\cdot c-2009\cdot d}{2009\cdot a+2010\cdot b}\)