Quy ước toán học dấu x = dấu .
===================================
1. (3x - 5)4 = 28
<=> (3x - 5)4 = 44
=> Ta có 2 trường hợp :
* TH1 : \(3^x-5=4\Rightarrow3^x=9\Rightarrow x=2\)
* TH2 : \(3^x-5=-4\Rightarrow3^x=1\Rightarrow x=0\)
Vậy x=1 hoặc x=0
a, \(\left(3^x-5\right)^4=2^8\)
\(\Rightarrow\left(3^x-5\right)^4=\left(2^2\right)^4\)
\(\Rightarrow\left(3^x-5\right)^4=4^4\)
\(\Rightarrow3^x-5=4\Rightarrow3^x=1=3^0\)
\(\Rightarrow x=0\)
b, \(3^{x+2}+3^x=10^2-10\)
\(\Rightarrow3^x.\left(3^2+1\right)=100-10\)
\(\Rightarrow3^x.10=90\Rightarrow3^x=9=3^2\)
\(\Rightarrow x=2\)
c, \(3^{x+1}-3^x=4.5-2\)
\(\Rightarrow3^x.\left(3-1\right)=20-2\)
\(\Rightarrow3^x.2=18\Rightarrow3^x=9=3^2\)
\(\Rightarrow x=2\)
Chúc bạn học tốt!!! Mấy câu còn lại làm tương tự!
1) \(\left(3^x-5\right)^4=2^8\)
\(\Leftrightarrow\left[{}\begin{matrix}3^x-5=4\\3^x-5=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3^x=9\\3^x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3^x=3^3\\3^x=3^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Vậy \(x_1=0;x_2=3\)
b) \(3^{x+2}+3^x=10^2-10\)
\(\Leftrightarrow\left(3^2+1\right)\cdot3^x=100-10\)
\(\Leftrightarrow\left(9+1\right)\cdot3^x=90\)
\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
c) \(3^{x+1}-3^x=4\cdot5-2\)
\(\Leftrightarrow\left(3-1\right)\cdot3^x=20-2\)
\(\Leftrightarrow2\cdot3^x=18\)
\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
d) \(5^{x+2}-5^x=10^3:2+10^2\)
\(\Leftrightarrow\left(5^2-1\right)\cdot5^x=1000:2+100\)
\(\Leftrightarrow\left(25-1\right)\cdot5^x=500+100\)
\(\Leftrightarrow24\cdot5^x=600\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
e) \(4^x+4^{x-1}=84:7\)
\(\Leftrightarrow\left(4+1\right)\cdot4^{x-1}=12\)
\(\Leftrightarrow5\cdot4^{x-1}=12\)
\(\Leftrightarrow4^{x-1}=\dfrac{12}{5}\)
giải tiếp...
2 .
Ta có : 3x+2 + 3x = 102 - 10
<=> 3x.32 +3x = 10.10-10
<=> 3x(9+1) = 10(10-1)
<=> 3x.10=10.9
<=> 3x = 9
<=> x = 2
3 .
Ta có : 3x+1 - 3x = 4.5-2
<=> 3x . 3 - 3x = 20 - 2
<=> 3x ( 3-1) = 18
<=> 3x = 9
<=> x=2
4 .
Ta có : 5x+2 - 5x = \(\dfrac{10^3}{2}\) + 102
<=> 5x.52 -5x = 102 .\(\dfrac{10}{2}+10^2\)
<=> 5x ( 52 -1 ) = 102 ( 5+1)
<=> 5x . 24 = 102.6
<=> 5x = \(\dfrac{600}{24}\)
<=> 5x = 25
<=> x=2
5 .
Ta có : 4x - 4x-1 = \(\dfrac{84}{7}\)
<=> 4x - 4x : 4 = 12
<=> 4x - 4x . \(\dfrac{1}{4}=12\)
<=> 4x ( 1- \(\dfrac{1}{4}\)) = 12
<=> 4x = 12: ( 1- \(\dfrac{1}{4}\) )
<=> 4x = 16
<=> x=2
1)\(\left(3^x-5\right)^4=2^8\Leftrightarrow\left(3^x-5\right)^4=\left(2^2\right)^4=4^4\)
\(\Leftrightarrow3^x-5=4\Leftrightarrow3^x=9\Leftrightarrow x=2\)
2) \(3^{x+2}+3^x=10^2-10\Leftrightarrow3^x.3^2+3^x=90\)
\(\Leftrightarrow3^x\left(3^2+1\right)=90\Leftrightarrow3^x.10=90\Leftrightarrow3^x=9\Leftrightarrow x=2\)
3) \(3^{x+1}-3^x=4.5-2\Leftrightarrow3^x.3-3^x=18\)
\(\Leftrightarrow3^x\left(3-1\right)=18\Leftrightarrow3^x.2=18\Leftrightarrow3^x=9\Leftrightarrow x=2\)
4)\(5^{x+2}-5^x=10^3:2+10^2\Leftrightarrow5^x.5^2-5^x=600\)
\(\Leftrightarrow5^x\left(5^2-1\right)=600\Leftrightarrow5^x.24=600\Leftrightarrow5^x=25\Leftrightarrow x=2\)
5) \(4^x+4^{x-1}=84:7\Leftrightarrow4^x+4^x:4=12\)
\(\Leftrightarrow4^x+4^x=12.4=48\Leftrightarrow2\left(4^x\right)=48\Leftrightarrow4^x=24\Leftrightarrow x\in\left\{\varnothing\right\}\)
a) \(\left(3^x-5\right)^4=2^8\)
\(\Rightarrow\left(3^x-5\right)^4=\left(2^2\right)^4\)
\(\Rightarrow\left(3^x-5\right)^4=4^4\)
\(\Rightarrow3^x-5=4\)
\(\Rightarrow3^x=4+5\)
\(\Rightarrow3^x=9\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\).
b) \(3^{x+2}+3^x=10^2-10\)
\(\Rightarrow3^x\left(3^2+1\right)=10\left(10-1\right)\)
\(\Rightarrow3^x\cdot10=90\)
\(\Rightarrow3^x=\dfrac{90}{10}=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\).
c) \(3^{x+1}-3^x=4\cdot5-2\)
\(\Rightarrow3^x\left(3-1\right)=20-2\)
\(\Rightarrow3^x\cdot2=18\)
\(\Rightarrow3^x=\dfrac{18}{2}=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\).
d) \(5^{x+2}-5^x=10^3:2+10^2\)
\(\Rightarrow5^x\left(5^2-1\right)=1000:2+100\)
\(\Rightarrow5^x\cdot24=600\)
\(\Rightarrow5^x=\dfrac{600}{24}=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\).
e) \(4^x+4^{x-1}=84:7\)
\(\Rightarrow4^x:1+4^x:4=12\)
\(\Rightarrow4^x\cdot1+4^x\cdot\dfrac{1}{4}=12\)
\(\Rightarrow4^x\left(1+\dfrac{1}{4}\right)=12\)
\(\Rightarrow4^x\cdot\dfrac{5}{4}=12\)
\(\Rightarrow4^x=12:\dfrac{5}{4}=12\cdot\dfrac{4}{5}=9.6\)
\(\Rightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{\varnothing\right\}\).